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We study multifractality in a broad class of disordered systems which includes, e.g., the dilutedx-y model.
Using renormalized field theory we analyze the scaling behavior of cumulant averaged dynamical variables(in
case of thex-y model the angles specifying the directions of the spins) at the percolation threshold. Each of the
cumulants has its own independent critical exponent, i.e., there are infinitely many critical exponents involved
in the problem. Working out the connection to the random resistor network, we determine these multifractal
exponents to two-loop order. Depending on the specifics of the Hamiltonian of each individual model, the
amplitudes of the higher cumulants can vanish and in this case, effectively, only some of the multifractal
exponents are required.
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The physics of critical phenomena is usually character-
ized by a few critical exponents. In certain, e.g. nonlinear,
systems, however, the scaling behavior can be much richer. It
can be even so complex, that its exhaustive characterization
requires infinitely many critical exponents[1]. This is the
famous phenomenon of multifractality[2]. Recently studied
examples are as diverse as heartbeat[3], quantum gravity
[4], and percolation[5] type problems like random resistor
networks(RRNs) [6] and self-avoiding walks on percolation
clusters[7].

In this note we study the multifractal properties of a broad
class of diluted physical systems, viz. those systems that can
be described by lattice models with a Hamiltonian that is a
sum of bond energiesU depending only on the differences
qi,j =qi −q j of continuous dynamical variablesqi andq j on
the bondski , jl between nearest neighboring sitesi and j ,

H = o
ki,jl

gi,jUsqi,jd. s1ad

Here, gi,j is a random variable that mimics disorder. It is
assumed to take on the values 1 and 0 with respective prob-
abilities p and 1−p. We focus on systems that are macro-
scopically isotropic and hence the bonds are assumed to be
undirected,Usqd=Us−qd. Moreover,U is assumed to have a
well defined minimum about which it can be expanded in a
power series inq (the locus of this minimum is used to
defineq=0). Otherwise,U is arbitrary. For example, it may
be periodic or not. Given these assumptions and conventions,
the bond energy has a Taylor expansion of the form

Usqd = o
l=0

`

alq
2l s1bd

with a1 being strictly positive. Diverse physical systems can
be described by this type of Hamiltonian. The simplest of
these systems is perhaps the RRN, whereqi corresponds to
the voltage Vi at site i and is defined on the interval
f−` ,`g. UsVd= 1

2sV2, with s being the bond conductance, is
the electric power dissipated on an occupied bond. A whole
family of systems that can be described by the Hamiltonian
H is the family of systems withx-y symmetry, i.e., systems

that are invariant under the orthogonal groupO2 of rotations
in a two-dimensional plane and the isomorphic group U(1) of
transformations of the phase of a complex number. The most
intuitive example here is perhaps a ferromagnet in which the
spins are confined by crystal fields to lay in a certain plane.
Other systems exhibitingx-y symmetry include supercon-
ductors, superfluid helium, the smectic-C and the hexatic-B
phase of liquid crystals and so on. In thex-y model qi be-
comes the anglewi that specifies the orientation of the spin at
site i and is defined on the intervalf−p ,pg. The bond energy
is a 2p-periodic function,Uswd=−K cosswd, with K being
the exchange integral.

Since we are dealing with diluted systems, we are facing
basically a percolation problem. Ifp is small, there are only
finite clusters. Ifp exceeds a certain threshold valuepc, on
the other hand, there exists an infinite cluster. At the thresh-
old, p=pc, the system undergoes an isotropic percolation(IP)
transition. Hence, the order parameterP` (the probability
that any site belongs to an infinite cluster) and the correlation
length j (the average diameter of a finite cluster) scale as
P`,sp−pcdb andj,up−pcu−n, respectively, whereb andn
are the well known critical exponents of the IP universality
class. Here, we are interested primarily in physical processes
taking place on the clusters like electric conduction or the
interaction of spins. We will see that the cumulants

Cq
sldsx,x8d = hkqx,x8

2l lcjC
! s2d

are adequate and convenient observables to investigate the
multifractality of such processes.k¯lc stands for the cumu-
lants of the averagek¯l with respect to the Hamiltonian(1),
e.g., kq2lc=kq2l, kq4lc=kq4l−3kq2l2 and so on.h¯jC de-
notes averaging over all configurations of the diluted lattice
and the star indicates the constraint thatx and x8 must be
connected.

To our knowledge, the scaling behavior of the cumulants
(2) is not known to date with 2 exceptions:(i) the RRN
where one has conventional gap scaling becauseH is har-
monic,Cq

sldsx,x8d,ux−x8ulf/n, with f being the resistance ex-
ponent known to second order in« expansion and(ii ) the
diluted x-y model where Cq

s1dsx,x8d,ux−x8uf/n and
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Cq
s2dsx,x8d,ux−x8ufc/n with fc being a critical exponent as-

sociated with corrections to scaling that is known to first
order in« expansion[10,11]. The purpose of this note is to
reveal the scaling behavior of theCq

sld for all systemscovered
by the Hamiltonian(1) for all l . Using renormalized field
theory we will explore the intricate connection of the present
problem to the renowned noisy RRN[8] to arbitrary order in
perturbation theory. We will show that theCq

sld scale at the
percolation threshold as

Cq
sldsx,x8d = Alux − x8ucl/n, s3d

with the exponentscl being identical to the noise exponents
of the RRN [9] and with theAl being amplitudes which
depend on the specifics ofU, i.e., Al ,al.

Field theoretic model. In order to apply field theory and
renormalization group(RG) methods we need to condense
the Hamiltonian(1) into a field theoretic Hamiltonian that is
suitable for studying theCq

sld. This can be done by following
the seminal work of Harris and Lubensky(HL) on the RRN
and the dilutedx-y model [10] with the result

H =E ddxE
uW
H1

2
FKs¹,¹uWdF +

g

6
F3J , s4d

where the Gaussian kernel is given by

Ks¹,¹uWd = t − D − wDuW − o
l=2

`

vlo
a=1

D

s¹usad
2 dl . s5d

The order parameter fieldFsx ,uWd lives on a continuous
d-dimensional space with the coordinatesx. It is subject to

the constrainteuWFsx ,uWd=0. The variableuW is a replicated
analog of the dynamic variableq and lives on a
D-dimensional torus[12]. The physical situation is recovered
in the replica limitD→0. The parametert is proportional to
pc−p, i.e., it specifies the distance from the critical point.w
is proportional toa1 andvl ,al. For vanishingvl the Hamil-
tonian(4) reduces to the original field theoretic Hamiltonian
of HL. Thevl are dangerous irrelevant couplings as far as the
Cq

sld are concerned. This can be seen by performing a scaling

analysis in the replica variableuW that leads to

Cq
sldsx,x8;t,w,hvkjd = wl f lsx,x8;t,hvk/w

kjd, s6d

where f l is a scaling function. This shows that thevl exclu-
sively appear in the irrelevant combinationvl /w

l. However,
it turns out the leading contribution toCq

sld vanishes upon
settingvl to zero, i.e., information about the leading scaling
behavior ofCq

sld is lost by omittingvl and this is why thevl
are dangerous.

Physical contents. To fully appreciate the physical con-
tents of the Hamiltonian(4) it is helpful to consider the rep-

lica space Fourier transformclWsxd=euW exps−ilW ·uWdFsx ,uWd of

the order parameter, wherelW is the replica variable conjugate

to uW. lW takes on values on a discreteD-dimensional torus.
The quantityclWsxd is designed so that its correlation function

Gsx,x8;lW d = kclWsxdc−lWsx8dlH, s7d

wherek¯lH indicates averaging with respect to the Hamil-
tonian(4), provides convenient access to the cumulantsCq

sld.
Applying a standard cumulant expansion one finds

Gsx,x8;lW d =HexpFo
l=1

`
s− 1dl

s2ld!
KlslW dkqx,x8

2l lcGJ
C

, s8d

whereKlslW d=oa=1
D flsadg2l is homogeneous polynomial inlW

of degree 2l. Equation(8) shows thatCq
sld can be calculated

via taking the derivative with respect toKlslW d, or in other

words, thatGsx ,x8 ;lW d is a generating function for theCq
sld.

This property will play an important role as we go along; it
will alow us to extract the scaling behavior of theCq

sld from

that of Gsx ,x8 ;lW d which in turn can be calculated by using
field theory and RG methods.

Diagrammatic perturbation theory. As usual, the central
element of our RG analysis is a diagrammatic perturbation
calculation. Its constituting elements are the three-leg vertex

−g and the Gaussian propagatorGsk ,lW dh1−dlW ,0Wj, where

Gsk ,lW d=st+k2+wlW2d−1 and wherek is a momentum or
wave vector conjugate tox. Due to the factorh1−dlW ,0Wj,
which enforces the constraintc0Wsxd=0 stemming from

euWFsx ,uWd=0, the principal propagator decomposes in a rep-

lica carrying partGsk ,lW d and a partGsk ,lW ddlW ,0W not carrying
replica variables. Each principal diagram decomposes into a
sum of replica carrying diagrams consisting of these two
types of propagators.

Note that none of the irrelevantvl appears in the propa-
gators. This is important because treating thevl in the same
way as the relevant couplingst and w would ruin our per-
turbation expansion, i.e., increasing orders in an expansion
of the Feynman diagrams in terms of thevl lead to increasing
superficial degrees of divergence. It is mandatory to truncate
this expansion, or in other words, we should treat thevl by
means of insertions of the composite field(or briefly opera-
tor)

Olsxd =
vl

2
E

uW
Fsx,uWdo

a=1

D

s¹usad
2 dlFsx,uWd. s9d

For the following arguments it is useful to employ the
so-called Schwinger parametrization, i.e., to rewrite the

propagators by using the mathematical identityGsk ,lW d
=e0

`dsexpf−sst+k2+wlW2dg. Let us consider a generic rep-
lica carrying Feynman diagram with successive single inser-
tions of Ol in each of its replica carrying propagators. The

lW -dependent part of such a diagram is of the form

vlo
i

sio
hkW j

KlslW idexpSwo
j

sjl
W

j
2D . s10d

Here, the summationohkW j is a summation over some com-
plete set of independent loop replica variableshkW j. The sum-
mations indexed byi and j are taken over all the replica

carrying propagators.lW j =lW jshkW j ,lW d, wherelW denotes an ex-
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ternal replica variable, is the total replica variable flowing
through propagatorj . The summation overhkW j can be sim-
plified by a completion of squares in the exponential and
eventually approximated by an integration. This integration
is Gaussian and hence straightforward. Taking the replica

limit D→0 and using thatKlslW d is a homogeneous polyno-
mial of degree 2l one obtains

vlo
i

sicishsjd2lKlslW d + ¯ , s11d

wherecishsjd is a homogeneous function of the Schwinger
parametershsj of degree zero that depends exclusively on the
topology of our generic diagram.

The remaining steps of calculating our generic Feynman
diagram consist of integrating out the loop momenta and the
Schwinger parameters. These steps are entirely analogous to
those well known from the field theory of IP and are skipped
here for briefness. For background of the methods involved
here, e.g., dimensional regularization and minimal subtrac-
tion involving Laurent expansions in«=6−d, we refer to
Ref. [13].

Beyond these standard procedures there is one intricacy
involved here that warrants further comment. The ellipsis in
expression(11) stands for various terms each of which con-

tains a homogeneous polynomial inlW . The polynomials of
the omitted superficially divergent terms, however, all have a

higher symmetry thanKlslW d. If an operator which depends

on lW via one of the more symmetric polynomials is inserted
into one of the IP Feynman diagrams it can generate all sorts
of polynomials, or for that matter operators, but it can never
generateOl. This feature distinguishesOl and makesOl a
master operator[6] whereas the other operators are just
slaves. All slaves must be taken into account in the renormal-
ization process and one has, at least in principle, to deal with
entire renormalization matrixes instead of simple renormal-
ization factors. However, these renormalization matrices
have a particular, simple structure. Due to this simple struc-
ture, the scaling exponent of a master operator such asOl is
completely determined by a single element of the renormal-
ization matrix. Hence, for the practical purpose of calculat-
ing a masters scaling exponent, the slaves can be neglected.

Comparison to the noisy random resistor network. The
noisy RRN is a generalization of the RRN in which the con-
ductances of occupied bonds are random variables. Thus,
there are two types of quenched disorder in this model, viz.
the dilution and the randomness of the conductance of indi-
vidual bonds. To treat the two types of disorder simulta-
neously, Park, Harris, and Lubensky(PHL) [9] introduced a
variant of the HL model in which the role of theD-fold

replicateduW is taken by asD3Ed-fold replicated voltageuJ.
The perturbation theory for the PHL model can be performed
essentially by following the steps described above. The only
noteworthy difference is that the field theoretic operators
Ol

RRN leading to the noise exponents describing the current

distribution on the network contain instead ofKlslW d the poly-

nomials Kl
RRNslJd=ob=1

E foa=1
D slsa,bdd2gl, wherelJ is the rep-

lica current conjugate to the replica voltageuJ. Though dif-

ferent,KlslW d andKl
RRNslJd share two pivotal properties. First,

they are of sufficiently low symmetry so that the correspond-
ing operatorsOl and Ol

RRN are master operators. Second,
both are homogeneous polynomials of degree 2l. Thus, in
both cases the perturbation theory leads to expression(11)
[of course with eitherKlslW d or Kl

RRNslJd] up to unimportant
differences residing in the ellipsis, i.e., up to different slaves.
Therefore, the two perturbation theories lead to identical re-
sults as far as the scaling behavior of the master operators is
concerned.

Scaling behavior. Having made this observation we can
draw on the noisy RRN, in particular on Refs.[6], for the
remaining steps. Eventually we are led for the correlation
functions at criticality to the scaling form

Gsx,x8;lW d = ux − x8u−2b/nHB0 + o
l=1

`

BlvlKlslW dux − x8ucl/n

+ ¯ J . s12d

In writing Eq. (12) we have used thatK1slW d=lW2 and we have
setw=v1. TheB’s are expansion coefficients. The multifrac-
tal exponentscl are identical to the noise exponents of the
RRN and hence they are known to second order in« [6],

cl = 1 +
«

7s1 + lds1 + 2ld
+

313 +lh3327 + 8lf1556 +ls2076 + 881ldgj − 672s1 + ld2s1 + 2ld2Hs2ld
12348s1 + ld3s1 + 2ld3 «2, s13d

where

Hsnd=ok=1
n 1/k. Note thatc1=f and c2=fc. Figure 1 plots

the dependence of thecl on l for several dimensions. Our
main result(3) follows immediately from the scaling form

(12) by taking the derivative with respect toKlslW d evaluated

at lW =0W.
Moments vs cumulants. Knowing the scaling behavior of

the cumulantsCq
sld one might wonder about the correspond-

ing moments

Mq
sldsx,x8d = hkqx,x8

2l ljC
! . s14d

If the bond energyU is harmonic, than one readily finds by
virtue of the relationkq2ll=s2ld! / s2ll!dkq2lc

l that
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Mq
sldsx,x8d , ux − x8ulf/n, s15d

i.e., the moments display conventional gap scaling. The situ-
ation is much more intricate ifU is not harmonic because
then the higher moments correspond to complicated sums of
products of the cumulants. We cannot prove, but it is not
implausible that

Hp
k=1

`

kqx,x8
2k lc

nkJ
C

!

, ux − x8uok=1

`
nkck/n. s16d

Provided that this holds, one is led back to Eq.(15) for the
leading behavior of the moments in the limitux−x8u→` be-

causecl is a strictly monotonically decreasing function ofl
and henceok=1

` nkckø lf with l =ok=1
` nk.

Concluding remarks. In summary, we have studied multi-
fractality in broad class of systems which includes the RRN
and the dilutedx-y model. The number of critical exponents
cl required to describe the scaling behavior of the cumulants
defined in Eq.(2) corresponds to the number of terms re-
quired in a power series expansion of the bond energyU. In
the RRN,U is harmonic and hence the cumulants(2) show
no multifractality. In the dilutedx-y model infinitely many
terms are required and one has true multifractality in this
case. Note that only the first fewcl differ significantly from
their large l limit c`=1. Hence, systems where the bond
energy is not harmonic but when expanded features several
terms beyond harmonic order will be hard to distinguish ex-
perimentally from systems with true multifractality. One
might say that these systems are effectively multifractal. The
scaling behavior of the moments corresponding to the cumu-
lants (2) remains a challenging open problem. We hope that
our work stimulates experiments or computer simulations to
decide whether these moments inevitably display gap scaling
or not.
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FIG. 1. Dependence of the multifractal exponentscl on l in
three, four, and five dimensions.
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